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ABSTRACT

Barras, Scaillet, Wermers (2010) propose the False Discovery Rate to separate skill (alpha) from
luck in fund performance. Using simulations with parameters informed by the data, we find that
this methodology is overly conservative and underestimates the proportion of nonzero-alpha
funds. For example, 65% of funds with economically large alphas of 2% are misclassified
as zero-alpha. This bias arises from the low signal-to-noise ratio in fund returns and the con-
sequent low statistical power. Our results raise concerns regarding the FDR’s applicability
in performance evaluation and other domains with low power, and can materially change its

conclusion that most funds have zero alpha.
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In an influential study, Barras, Scaillet and Wermers (2010) — hereafter BSW — propose the False
Discovery Rate (FDR) as an advantageous methodology for separating skill from luck and precisely
estimating the proportions of funds that generate true ‘alpha’. Applying this approach to U.S. equity
mutual funds, they find that the vast majority (75%) of funds have zero alpha net of expenses, a siz-
able minority (24.4%) have negative alpha, and only a negligible proportion (0.6%) beat the bench-
marks. These findings have been widely cited in the literature as evidence of no skill in the industry,
and they have been interpreted as being consistent with the Berk and Green (2004) equilibrium.! But
the contribution of BSW stretches beyond the mutual fund literature and extends to introducing and
popularizing the FDR methodology in finance. The remarkable accuracy of the FDR estimator as
shown by BSW in a simulation — together with the approach’s simplicity — has spurred a number of
subsequent studies to apply it not only in the context of fund performance but also in other contexts.
For example, it has been used to assess the performance of trading strategies, to estimate the pro-
portion of takeovers that experience abnormal trading volume, and to detect jumps in asset returns.’

In this study, we reassess whether the FDR methodology can successfully distinguish skill
from luck in mutual funds. We expand the simulation of BSW and we find that, for data generating
processes that are informed by the mutual fund data, the FDR estimator becomes markedly biased.
This bias arises from the fact that the pivotal assumptions behind the estimator fail due to the low

signal-to-noise ratio in fund return data and the consequent lack of statistical power in tests of

fund alpha. In particular our simulations show that, given the information in the data, the FDR

IFor example, see Busse, Goyal and Wahal (2010), Ben-Rephael, Kandel and Wohl (2012), Jiang, Verbeek and
Wang (2014).

2Cuthbertson, Nitzsche and O’Sullivan (2012) and Criton and Scaillet (2014) apply the FDR in the context of UK
mutual funds and of hedge funds respectively; Bajgrowicz and Scaillet (2012) apply it in the context of trading strategies
and Augustin, Brenner and Subrahmanyam (2015) in the context of takeovers; Patton and Ramadorai (2013) use it

to assess funds’ risk exposures; and Bajgrowicz, Scaillet and Treccani (2015) use it to detect jumps in asset returns.



methodology misclassifies as zero-alpha many funds with economically large alphas (e.g., 2%
per year), and as a result, it may greatly underestimate the proportion of nonzero-alpha funds.
We also find that, while the number of observations per fund affects the estimator’s accuracy, the
number of funds itself does not, as it does not affect the signal-to-noise ratio. This distinction is
important, as most applications of the FDR in finance involve panels with a large N but small T
dimension. We note that, though the simulation in BSW is a valuable first step in assessing the
FDR methodology for fund performance evaluation, it does not diagnose these limitations, because
it is conducted under the specific assumptions that all nonzero alphas are very large (around 3.5%
per year) and there is a large number of observations per fund.

The bias we demonstrate brings into question the economic conclusions of the FDR approach
for fund alpha. Specifically, the finding that most mutual funds have (almost) zero alpha may not be
due to a lack of skill in the industry and may not support the Berk and Green (2004) model in which
decreasing returns to scale and rational capital reallocation drive fund alphas to zero. Rather it is
likely an artifact of an estimation methodology that has low power to detect nonzero-alpha funds.’
Overall, our results raise concerns about the applicability of the FDR in fund performance evaluation

and more widely in areas in finance where the signal-to-noise ratio in the data is similarly low.

The FDR. The FDR approach was developed by Benjamini and Hochberg (1995) in statistics
to control the proportion of null hypotheses that are falsely rejected when conducting multiple
tests. As a less conservative alternative to previous approaches such as the Bonferroni correction,

the FDR has become widespread in biology-related fields where multiple testing is common. The

3To clearly see that the FDR analysis of the real mutual fund data yields biased estimates, one need only compare
the proportion of funds it classifies as skilled/unskilled on the basis of returns before and after expenses (which average
1% per year). It estimates that 75% of funds have zero alpha after expenses, which would imply that at least as many

have positive alpha before expenses. But it estimates that only 10% of funds have positive alpha before expenses.



idea behind this approach is simple. Let I be the number of hypothesis tests and p; the p-value
for test i. Assuming that i) the p-values corresponding to true nulls are independent and uniformly
distributed on [0, 1] and ii) the p-values corresponding to the alternatives are near O, one can
estimate the proportion of true nulls as follows. Since, by assumption (ii), all p-values above some
threshold A € (0, 1) correspond to true nulls, the proportion z7° of true nulls can be estimated by
counting these p-values, extrapolating to the entire [0, 1] interval, and dividing by the number of
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tests, that is, 7 - }. Then, the proportion of nulls expected to be falsely rejected at

significance y € (0, 1) is 2% (1) - y.

While assumption (i) is relatively innocuous,*

assumption (ii) is quite strong and may easily
fail. Essentially, if (some) individual tests have low power to detect the alternative, the p-values
that correspond to the alternatives will be distributed over the entire [0, 1] interval. Then, some
of the p-values above the threshold 4 will correspond to alternatives, so the proportion of nulls
(alternatives) will be overestimated (underestimated). Thus, to get meaningful estimates from the
FDR approach, it is crucial to assess its performance in the context in which it is applied.

In the context of fund performance, the literature typically separates funds into three groups:
1) those with negative alpha because, for example, they suffer from exploitable biases or have high
costs/fees, 11) those with (almost) zero alpha, consistent with the Berk and Green (2004) equilib-
rium, and iii) those with positive alpha because, for example, they possess superior information or
trading skill. The FDR methodology can be used to estimate the proportions of these groups while

accounting for false discoveries, that is, lucky/unlucky zero-alpha funds for which the zero-alpha

null is incorrectly rejected. But the aforementioned assumption (ii) of the FDR is equivalent here

4To be precise, uniformity also fails in the presence of dependent data. Benjamini and Yekutieli (2001) have refined
the FDR to work for arbitrary dependence, at the expense of over-conservativeness. We examine this issue in the fund

performance context in Section II.D.



to assuming that nonzero alphas are sufficiently large and/or alpha is estimated with great precision.
This is unlikely to hold for the real data: Not only is the true alpha distribution likely to have
complex features, with some less extreme alphas, but also we know that the amount of information

in fund returns varies widely across funds.’

Our analysis. First, we investigate the FDR estimates’ sensitivity to variations in the distri-
bution of fund alphas. Our starting point is the data generating process that BSW use in their
simulations, which is a discrete distribution with large nonzero alphas: a 75% mass at o = 0, a 23%
mass at o« = —3.2%, and a 2% mass at o = 3.8%, per year. Then, we vary the proportions of funds
with zero, negative, and positive alpha as well as the location and spread of the nonzero alphas.
We find that, as the proportion of zero-alpha funds gets smaller and nonzero alphas become less
extreme, the FDR estimator becomes inaccurate: the point estimates are far from the truth and their
confidence intervals rarely contain the true proportions. Importantly, the FDR methodology does
not misclassify as zero-alpha only funds with small nonzero alphas (which might be reasonably
expected), but also funds that have economically large alphas. For example, 90% (65%) of funds
with an alpha of 1% (2%) per year are misclassified as zero alpha. Due to this bias, in many cases
the FDR does not outperform the naive approach of simply counting the null rejections without
performing a correction for false discoveries.

Second, we explore how the number of observations — hence the amount of information — in

the data affects the FDR estimator. BSW are conservative in the cross-sectional dimension of their

SIndeed, it has been estimated (see Jones and Shanken (2005), Andrikogiannopoulou and Papakonstantinou (2016),
Harvey and Liu (2018)) that very few funds have very large alphas of the order that would ensure accurate estimation
and a small p-value, while a large proportion of funds have less extreme — but economically large — alphas (e.g., about
half of all fund alphas are between 1% and 2.5%, in absolute value, annualized). Furthermore, the number of monthly

return observations per fund ranges across funds from fewer than 100 to almost 400, with an average value close to 150.



simulated data but less so in the time-series dimension. That is, they generate balanced panels of
fund returns in which the number of funds (1,400) is smaller than in the real data (over 2,000), but
the number of observations per fund (384) is equal to the maximum — and more than two times
the mean — number of observations across all funds in the data. On the one hand, we find that in
fact the number of funds has no effect on the estimator’s accuracy, as it does not affect the power of
each individual test, nor the distribution of alpha p-values in the sample. It is a little like estimating
the mean weight of individuals by separately weighing them with a biased scale; no matter how
many individuals are weighed, the result will be equally biased. On the other hand, we find that the
number of observations per fund has a strong effect, but convergence to the true proportions can
be very slow as this number increases. Alarmingly, given the relatively short time-series dimension
of fund data, the FDR methodology is inaccurate even if nonzero alphas are as large as in the
BSW simulation; for example, 30% of funds with alphas of +3.5% are misclassified as zero-alpha.
Furthermore, we find that even two hundred years of data may not be sufficient to get accurate
estimates from the FDR, which is quite discouraging regarding its applicability in this context.

Finally, we study the effect that cross-sectional correlation in fund return errors has on the FDR
estimator. Like BSW, we allow for a latent linear factor error structure, using realistic parameters
estimated from the data. We find that error correlation increases the estimator’s variability by a
factor of five. This means that, even if alphas are large and the FDR estimator is unbiased, it will
often be far from the truth.

The remainder of the paper is structured as follows. In Section I, we describe in more detail
the FDR approach and its assumptions. In Section II, we use simulations to examine the FDR
approach’s accuracy in the mutual fund setting as we vary the characteristics of the data generating

process. In Section III, we conclude.



I. Fund Performance and the False Discovery Rate

Mutual fund skill, ‘alpha’, is typically estimated using a linear factor model of fund returns (e.g.,
Carhart (1997)).% A natural approach to estimating the proportions of funds with zero, negative, and
positive alpha is to i) perform multiple fund-level regressions of fund returns on factor returns to
calculate fund-level alpha estimates a,;; ii) calculate alpha p-values p; for the zero-alpha null hypoth-
esis Hl.O : a; = 0 against the alternative HiA ca; #0,foreachfundi =1, ..., I; and iii) count the
proportion of funds for which the null is rejected at some significance level. However, this approach
(henceforth the ‘no-luck’ approach) does not control for the probability of incorrectly rejecting true
nulls (Type I error). To account for the problem of false discoveries in multiple testing in the context
of mutual fund performance evaluation, BSW apply the False Discovery Rate (FDR) approach.

The FDR methodology estimates the proportion 7 of true nulls (funds with zero alpha) as

ﬁ'#{ﬁi:ﬁi > /1}
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where 4 € (0, 1) is some threshold p-value. This estimate relies on the following crucial assump-
tions: 1) funds satisfying the zero-alpha null have estimated p-values that are independent and
uniformly distributed on the interval [0, 1], and ii) all the p-values that lie above A correspond
to true null hypotheses. Then, given this estimate 7 ° (1), the proportion of nulls that are expected

to be falsely rejected at any significance level y € (0, 1) can be calculated as 7" (1) - y . Finally,

5This definition of skill follows BSW and much of the related literature (e.g., Baks, Metrick and Wachter (2001),
Kosowski et al. (2006), Fama and French (2010)). We note, however, that other definitions of skill have been
proposed. Berk and Green (2004) define skill as alpha before costs (including, importantly, information acquisition),
Pastor, Stambaugh and Taylor (2015) define it as alpha adjusted for fund and industry size (i.e., the alpha on the first
dollar invested in the fund and industry), while Koijen (2014) defines it, under market efficiency, as the price of the

active-portfolio risk (i.e., the compensation for holding assets that earn a risk premium).



for a significance level y < A high enough that the null hypothesis is rejected for all alternatives
(funds with nonzero alpha), we can calculate the proportion of null rejections and adjust downward
for the proportion of false null rejections. That is, we can estimate the true proportions 7~ and

n T of negative-alpha and positive-alpha funds as

#{(ai, pi) s ai <0,p; <y} —7%0(/1)-1
Ji 2
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If the assumption holds that all p-values above A correspond to true nulls, then choosing a large y
effectively also deals with the problem of failing to reject the zero-alpha null when it is false (Type
IT error). The values for A and y can be optimally selected using a bootstrap procedure to minimize
the estimated mean squared error of #° and of 7 = and 7+ respectively.” We note that this is the
procedure used in the simulations by BSW as well as in our simulations in Section II below.
The crucial assumption that all p-values above the threshold A correspond to zero-alpha funds
is met when nonzero alphas are far from 0 and/or the amount of information in the data is large.
But it is likely that some nonzero alphas are not very far from zero, and moreover the information
contained in each fund’s returns is known to vary widely across funds. As a result, in the context
of mutual funds, it is unlikely that the density of p-values satisfies the assumption on which the

FDR correction relies. In this case, the FDR methodology overestimates the proportion of true

"In particular, Storey (2002) suggests the following procedure for selecting 1. First, set a range of possible
values for 4, for exmaple, 1 € {0.30,0.35,...,0.70}, and compute 70 (2) for each. Second, for each A, form a
number of bootstrap replications of 7° (1) by drawing with replacement from the p-values in the sample of funds;
for example, form 7%,? (2) for b € {1, ..., 1,000}. Then, for each 4, calculate the estimated Mean Squared Error (MSE)
1,T100 [17£(1)0 [(ﬁg (1) — min; z° (/1))2], where min; 7° (1) is used as a proxy of 7 as the latter is unknown. Finally,

select the value of A that minimizes the estimated MSE. BSW suggest an analogous procedure for selecting the value

of y (for details, see the Internet Appendix of BSW).



null hypotheses.®

To illustrate this limitation of the FDR approach, we conduct two preliminary simulations
using the framework described in Section II. We generate two samples of fund returns: one in
which alphas are generated from the distribution used by BSW — a discrete distribution with 75%
mass at a = 0, 23% mass at a = —3.2%, and 2% mass at o = 3.8%, annualized — and one in
which alphas are generated from a distribution with 45% mass at o = 0 and equal weight on two
continuous distributions with negative and positive support respectively, as shown in Figure 1B;
the remaining simulation parameters are as in BSW (for details, see Section II.A below).

In Figure 1, we plot the two alpha distributions and the corresponding histograms of estimated
p-values from fund-by-fund tests of the zero-alpha null. We see that, under the first distribution,
nonzero alphas are sufficiently far from zero so all p-values above 4 belong to zero-alpha funds.
But under the second distribution, some nonzero alphas are closer to zero so about a quarter of
p-values above A belong to nonzero-alpha funds. Thus, in the former case the FDR approach esti-
mates the true proportions of funds accurately, while in the latter it overestimates (underestimates)
the true proportion of zero-alpha (nonzero-alpha) funds by about a third.

We note that, for illustration purposes, in these simulations we have used 4 = 0.5. We also note
that it is not (generally) possible to increase the accuracy of the FDR estimates by increasing 4 or
by selecting it optimally. This can clearly be seen in Panel D of the figure: Since the distribution of
p-values is flat above 0.5, the FDR estimate of zero-a funds is essentially the same for all values
of 4 above it. The intuition for this is that, while the number of Type Il errors falls as the threshold
A increases, their proportion remains the same as they occur in the smaller interval (4, 1). Indeed,

BSW note that — in the mutual fund setting — the FDR estimate of zero-a funds is not very

8In Section I1.D, we also investigate the impact of p-value dependence on the performance of the FDR estimator

in the fund performance context; it greatly increases the variability of the FDR estimator but not its bias.



sensitive to the value of A, and intermediate values such as 0.5 produce estimates that are very
close to those produced by the optimal approach described above.

Next, we use additional simulations to methodically investigate the effect that the lack of
statistical power may have on the estimation of the proportions of fund types, and how this effect

varies as we vary the characteristics of the data generating process.

II. Simulation Analysis

A.  Simulation Setup

To examine the accuracy of the FDR estimator in the context of fund performance, we generate
samples of fund returns by combining various data generating processes (DGPs) for alpha with a
model for returns. In each sample, we then use the FDR methodology to estimate the proportions
of funds with zero, negative, and positive alpha. Here we describe our simulation framework,

which closely follows that in BSW.

Model of Returns We generate samples of fund returns according to the linear factor model
rie = ai + F{ Bi + €ir, (3)

with r;; the month-# net return of fund i in excess of the risk-free rate, a; the fund-specific alpha, F;

the month-7 factor returns, f; the fund-specific factor loadings, and ¢;; the month-¢ error for fund i.

Mutual Fund Data To select plausible simulation parameters, we use the same mutual fund data
sources and apply the same data filters as BSW. Specifically, we obtain monthly fund return data

from the CRSP Survivorship-Bias-Free US Mutual Fund Database, for the period 1975 to 2006.°

Extending the sample to 2011 has no material effect on our results regarding the accuracy of the FDR estimator.



We focus on actively managed open-end US equity funds, so we exclude index, fixed income,
international, accrual, money market, and sector funds. We identify funds’ share classes using the
MFLINKS database, and we compute the monthly return for each fund as the weighted average
of its classes’ returns, with weights equal to the beginning-of-month total net asset value of each
class. To improve data accuracy, we omit any return that directly follows a missing one, as it may
compound multiple months’ returns. We also keep funds with at least 60 return observations, not
necessarily contiguous but with no gaps greater than a year. The benchmarks against which we
measure performance are as in Carhart (1997), that is, the vector of factor returns, F;, contains
the excess return of the market portfolio and the returns of zero-investment factor-mimicking port-
folios for size, book-to-market, and momentum. To construct these benchmarks, we use the CRSP
NYSE/Amex/NASDAQ value-weighted index as the market factor and the one-month Treasury bill
rate as the risk-free rate, while monthly returns for the factor-mimicking portfolios are downloaded

from Kenneth French’s website.

Simulation Parameters Our starting point is a simulation in which the sample size and the
DGPs for the alphas, betas, factor returns, and errors in Equation 3 are as in BSW. In detail, in this
baseline a balanced panel of fund returns is generated, with cross-sectional dimension N = 1,400
and time-series dimension equal to the total number of months in the data (7 = 384). Alphas are
drawn from a discrete distribution with 3 point masses representing funds with zero, negative, and
positive alpha. This distribution’s parameters are chosen as follows. Initially, the FDR approach
is applied to the real data at the end of each year from 2002 to 2006, using all funds’ returns up to
that point. Next, the proportions of zero-, negative-, and positive-alpha funds are set to the mean

estimated proportions (75%, 23%, and 2% respectively). And then, the location of the nonzero

10



alphas (at —3.2% and 3.8% per year) is calibrated to be consistent with these proportions.'® Factor
returns (F;) are drawn from a normal with parameters equal to their sample counterparts in the
data, and factor loadings (f;) are drawn from a normal with parameters equal to their sample
counterparts from fund-level estimations of Equation 3 in the data. Finally, the errors are assumed
to be homogeneous, homoscedastic, and cross-sectionally independent, that is, g;; ~ N (O, 02),
with standard deviation equal to its sample counterpart (¢ = 0.021).

Subsequently, we consider a variety of alternative simulation parameters. First, the aforemen-
tioned alpha DGP may miss the mark, because it is calibrated under the assumptions that nonzero
alphas come from a point mass and that the FDR methodology is accurate when applied to the real
data. However, either of these assumptions may not hold in reality. Thus, in Section II.B we exam-
ine the estimator’s sensitivity to alternative alpha DGPs, in which we vary both the proportions of
fund types and the distribution (location and spread) of nonzero alphas. Second, since the real data
sample is an unbalanced panel with 2,076 funds and a median (mean) of 150 (180) observations
per fund, in Section II.C we examine the FDR estimator’s performance on an unbalanced panel
similar to the one in the data. We also explore how the number of observations in the data — both
in the time series and in the cross section — affects the FDR estimator. Third, in Section 1I.D
we allow for cross-sectional error correlation, using parameters estimated from the data.

To mitigate the effect of simulation noise, in all simulations we calculate the mean estimate

for the proportion of each alpha type across 1,000 repetitions.

10T detail, assuming the negative (and similarly the positive) alphas come from a point mass implies that the distribu-
tion of the ¢-statistics corresponding to these alphas follows a noncentral ¢ distribution with noncentrality that depends on
the point mass’s location. If, in addition, the FDR approach is accurate, this location can be calculated by comparing the

estimated proportions of negative alphas at different significance levels; for details, see the Internet Appendix of BSW.
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B. Variation in DGP for alpha
B.1. Discrete Nonzero alphas

In our first simulations, we generate alphas from a discrete distribution with three point masses
(8°, 57, and 57), that is,

a~ 120 + ™oy + 7r+5;, 4)

0 7z, and 7T of funds with zero, negative, and positive alpha, and the

varying the proportions @
location (—a and +a) of the nonzero alphas. Specifically, we vary 7° from 93.75% to 6.25%,
keeping the ratio Z—; equal to 11.5 (as in BSW), and we vary @ from 1% to 3.5% per year.!!

In Table I we report, for each DGP, the true and the mean (across 1,000 repetitions) estimated
proportions of funds with zero, negative, and positive alpha from the FDR methodology, along with
the estimates’ standard deviations. Each cell of the table is shaded, with darker (lighter) shades
corresponding to more (less) biased estimates.!?

We see that for the DGP similar to that used in the BSW simulations — 7% = 75%, =7~ = 23%,
nt =2%, and a = 3.5% — the FDR yields proportions (76.3%, 21.4%, 2.3%, respectively) close
to the true ones. But it becomes biased as the proportion of zero-alpha funds becomes lower and
nonzero alphas become less extreme but remain economically large. For example, for the DGP close

to the Andrikogiannopoulou and Papakonstantinou (2016) estimates from the real data — z° =

T the Internet Appendix, we present results where the ratio z—; equals 6, and our conclusions remain the same.

12To be precise, unbiased estimators have no shading and estimators with the maximum possible bias across all DGPs
in the table have the darkest shading. For example, across all DGPs in Table I, the minimum true 7915 6.25% (the maxi-
mum true 7 T is 7.50%) so the maximum possible bias is 93.75% (7.50%), hence estimators of 7% (z 1) with bias closer
t0 93.75% (7.50%) have darker shades. We note that light shading does not indicate small bias, but rather bias that is sub-
stantially smaller than the maximum possible. For example, for DGP D-3 and a = 2.5%, the FDR estimates are lightly

shaded even though they are very biased (7° = 37.50% but 7° = 52.58%). All tables in the paper are shaded similarly.

12



6.25%, 1~ = 86.25%, 7 = 7.5%, and & = 1% — the FDR approach is very conservative: It esti-
mates more than ten times as many zero-alpha funds (7% = 80%), a quarter as many negative-alpha
funds (7~ = 20%), and virtually no positive-alpha funds (7 + = 0.01%), massively underestimat-
ing their presence. Notably, our results also raise concerns about the accuracy of the FDR estimates
calculated from the real data (7° = 75%, 7~ = 24.4%, #+ = 0.6%). As we see in Table I, these
estimates could have arisen from several DGPs that are economically very different, for example,
both from DGP D-2, for which zero-alpha funds are a large majority, as well as from DGPs D-3 and
D-4, for which zero-alpha funds are a minority and the majority of funds have alpha of 1% to 2%.

Importantly, the mis-estimation we document is not because the FDR approach is econom-
ically conservative, but because it is statistically conservative. That is, it does not misclassify
as zero-alpha funds those with alpha close to zero but rather those for which, given the noise
in the data, there is insufficient power to reject the null. To see this, it is useful to consider a
back-of-the-envelope calculation. In the real (hence in our simulated) data, the average fund has
return volatility of about 5% per month and about 80% of this is explained by the factor model. So,
with 384 observations, the standard error of a fund’s a is about 0.115% per month ( %;0'2).'3
With a threshold p-value 4 = 0.5, a fund with an economically significant alpha of, for example,

+1% (£2%) annualized has & p-value that exceeds A with probability 40% (20%).'* This implies

that the FDR methodology misclassifies ‘1‘%’ = 80% (%(iqj = 40%) of funds with a = £1%

(a = +£2%). Indeed, in the first (third) column of Table I we see that, across DGPs, about 80%

13The standard error SE can be written as 33(1—1?2)/ N, with ¢, the sample standard deviation of returns. Also,
the power of rejecting at significance level 4 the zero-alpha null against a two-sided alternative when the true value
is a can be roughly approximated by 1 — © ((I)_1 (1 - %) — Ial/SE), where @ is the standard normal cdf.

14 As noted in BSW and our discussion above toward the end of Section I, 2 = 0.5 yields close to optimal results
for the FDR methodology in the mutual fund context. To be clear, A = 0.5 is used for illustration purposes here; in

all our simulations, we select 4 optimally (see Footnote 7).
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(40%) of nonzero-alpha funds are misclassified as having zero alpha.'

A further important point is that, as a consequence of the FDR estimator’s bias, the resulting
confidence intervals can become highly misleading. To see this, we construct 95% confidence
intervals for the proportions — 7Y, 7, 7t — for all DGPs of Table I, and we present in Table
IT their actual coverage probabilities, that is, the percentage (across 1,000 repetitions) of samples
in which the true proportion is in the corresponding interval. For example, for 7" we calculate

0is in the interval 7° + 1.96 - 640, Where 79 is the

the proportion of samples such that the true 7
FDR estimate of 7° and 60 is the estimate’s standard deviation. We find that, for most DGPs,
the actual coverage probabilities are very different from the nominal. In particular, for about half
our DGPs, the confidence intervals never contain the true proportions.'®

Next, we check if the FDR approach offers a significant improvement relative to the previously
used ‘no-luck’ approach, which simply counts the proportion of funds with significant alphas at
the 0.1 significance level without correcting for Type I errors. In Figure 2, we compare the two
approaches for different levels of a. We plot the true and estimated proportions of negative- and

positive-alpha funds from each approach as a function of the true proportion of zero-alpha funds,

for three levels of a: 1%, 2%, and 3.5%. In Panels C, F of the figure we see that, for extreme

ISFollowing BSW, in these simulations we use samples of 384 observations per fund. As we have noted above,
in the real data the average number of observations per fund is half that, so the standard error of the & estimate is even
higher and the FDR approach’s accuracy is even lower than shown in this rough calculation. In a sample with 180
observations per fund, the FDR approach misclassifies 90% (65%) of nonzero-alpha funds with o = 1% (o = +2%)
as zero-alpha funds.

16Similar results for 90% and 99% confidence intervals are presented in the Internet Appendix. The coverage
probabilities of the confidence intervals are similarly low for all subsequent simulations in Sections II.C and II.D; while
we do not present a table of coverage probabilities for each of them, it is easy to see that taking an interval that extends

twice the standard deviation on either side of the FDR estimates of the proportions rarely contains the true proportions.
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alphas (& = 3.5%), the FDR approach estimates the proportions accurately for all levels of z°,
while the no-luck approach is less accurate as it fails to account for lucky and unlucky funds. But
in the other panels we see that for less extreme, yet economically large, alphas — a = 1% and
o = 2% — the FDR approach does not perform better than the no-luck approach, and it may even

perform worse on average, due to its large bias.!”

B.2.  Normal Nonzero alphas

Next, we generate fund alphas from a mixture of a point mass at O and a normal distribution,
that is,

a ~ 12" + (n_ + 7r+) fN(ua,ag)’ ®))

where we set u, = 0 for ease of exposition, and we vary the proportion of zero-alpha funds (z°)
from 95% to 1% and the standard deviation (o) from 0.5% to 5% per year. This specification

is important as it nests the distributions estimated by some studies in the literature (e.g., Jones and

"Panels C and F replicate Figure 3 in BSW, with slight differences. First, in BSW’s Figure 3C, the line plotting
n~ should be steeper than — not identical to — the line plotting the FDR estimates (as plotted, 7~ + 7 # 1 when
79 = 0). Second, for expositional purposes, BSW have drawn 7-statistics from a mixture of distributions with small
variance so that Type II errors do not occur. Instead, we simulate fund returns using the baseline simulation parameters
and compute alpha ¢-statistics by regressing the returns on the factor model; so Type II errors do occur. Third, in our
figure, lines plotting the no-luck estimates are constructed using tests of size 10% rather than 20%; this explains why the

0

no-luck line in our Figure 2F is downward-sloping and tends to 5% as 7" increases, rather than being upward-sloping

and tending to 10%.
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Shanken (2005), Fama and French (2010)).'8 We present results from these simulations in Table III.
As in the previous simulations, the lower the proportion of zero-alpha funds and the narrower
the spread of the distribution, the larger the FDR estimates’ bias. For example, for the DGP close
to the ones estimated by Jones and Shanken (2005) and Fama and French (2010) on the real data —
with 70 = 1%, 7~ = 7+ = 49.5%, and o, = 1.5% — the FDR approach grossly overestimates
7% (70% instead of 1%) and underestimates 7 ~ and 7+ (about 15% instead of 50% each).
Motivated by recent studies which suggest that the distribution of fund alpha may be fat-tailed
(Sastry (2015), Andrikogiannopoulou and Papakonstantinou (2016)), we also examine the sensitivity
of the FDR estimators to fat tails by simulating nonzero alphas from a ¢ distribution. We find that fat
tails slightly ameliorate the bias in the FDR estimates, but this effect is very weak and the bias is still

large even with very fat tails. We present detailed results from this analysis in the Internet Appendix.

C. Variation in Simulated Sample Size

The above simulations use a balanced panel with N = 1,400 funds and 7" = 384 observations
per fund, as in BSW. But the real data sample is an unbalanced panel with N = 2,076 funds and
T ranging from 60 to 384 with median/mean of 150/180. As a result, it is important to examine
the FDR estimator’s sensitivity to the number of funds, to the number of observations per fund,
as well as to the use of an unbalanced panel similar to the one observed in reality.

In Table IV we report the mean estimated proportions of funds as a function of the simulated

sample size, for a DGP in which the FDR approach performs poorly and which is consistent with

8jones and Shanken (2005) find that alphas follow a normal with mean around —0.8% and standard deviation
around 2%, and Fama and French (2010) estimate a normal with zero mean and standard deviation around 1% per
year. Here, we generate alphas from a normal centered at 0, and in the Internet Appendix we present results from

a normal centered at —0.8%; the results are very similar.
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empirical evidence using the real data (see Andrikogiannopoulou and Papakonstantinou (2016),
Harvey and Liu (2018)). Specifically, in this simulation alpha is drawn from a discrete distribution
with 7% = 9%, 7~ = 78%, #+ = 13%, and a = +1%. We see that increasing N has virtually
no effect on the bias in the FDR estimator, while increasing 7" makes the estimates more accurate.
However, for the DGP we consider, we see that convergence is very slow: even two hundred years of
data (i.e., more than 2,000 monthly observations) are not sufficient to get accurate estimates from the
FDR approach.'® Given that varying N has no effect on the accuracy of the FDR estimators, without
loss of generality we use N = 2,000, as in the real data, in all subsequent simulations we conduct.

Next, we study the effect of having an unbalanced panel with characteristics similar to the panel
observed in reality. We revisit our first simulations (see Equation 4), but we draw the number of
observations per fund from its empirical distribution in the data. We report our results in Table V.

Comparing Tables I and V we see that, for all DGPs, the bias is more pronounced in the presence
of an unbalanced panel with a shorter average time-series dimension. With the shorter unbalanced
panel, the FDR methodology misclassifies 90% (65%) of nonzero-alpha funds with o = £1% (a0 =
+2%) as zero-alpha funds. Even for large alphas of £3.5%, the FDR approach is not as accurate as
shown above: it misclassifies about 30% of nonzero-alpha funds. We note that this increase in bias is
not due to the unbalanced nature of the panel, but due to the smaller average number of observations
per fund. Indeed, the FDR estimates are almost identical whether we simulate an unbalanced panel
with a mean of 180 observations per fund (see Table V) or a balanced panel with 7" = 180 (see Table
IA.VII in the Internet Appendix). This is because the empirical distribution of the number of obser-
vations per fund has small positive skewness, so alphas that are estimated less precisely are balanced

out by those estimated more precisely and the overall proportion of misclassified funds is unchanged.

19n the Internet Appendix, we show similar effects for a DGP with @ = 2%, for which the FDR approach performs

better. Even though in that case convergence to the true values is, as expected, faster as 7" increases, it is still very slow.
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D. Cross-sectional Error Correlation

As we have noted, the FDR approach assumes that p-values, therefore the errors in Equation 3,
are independent. BSW show in a simulation that the FDR estimators continue to be very accurate
when they introduce cross-sectional correlation in the factor model errors. Here, we revisit this
simulation and make several adjustments to better capture the characteristics of the real data.

In detail, BSW replace the assumption &;; ~ N (0, 02) in Equation 3 with a latent linear factor

structure intended to capture the role of non-priced factors. In particular,

eir = G0+ Gy 0ly;——q + G 61— + it (6)
where all funds load on factor G;, only negative- and positive-alpha funds load on factors G, and
G respectively, d is the common loading of funds on these factors, and &; ~ N (0, 0*2) is the
cross-sectionally independent part of the error. Assuming each factor follows a normal N (0, o),
BSW set rule-of-thumb parameters 6 = 0.035 (the mean monthly standard deviation of the
Fama-French factors) and 0 = 0.11 (the mean loading to the Fama-French factors).

Here, we replace the assumption &;; ~ N (0, 02) with ¢;, := G}6; + &1, where G, is a vector
of four latent factors, one on which all funds may load and three strategy-specific factors on
which only funds with a specific investment strategy (Growth & Income, Growth, or Aggressive
Growth) may load, J; are fund-specific loadings, and &; ~ N (O, al.*z) with ¢;* a fund-specific
standard deviation. Importantly, the fund-specific J; and o;* we use in our simulations are estimated

from the data (for estimation details, see Geweke and Zhou (1996) and Andrikogiannopoulou and
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Papakonstantinou (201 6)).20

We find that the FDR estimator’s bias is unaffected but its variability is greatly increased in the
presence of this correlation. For the baseline DGP, the 90% intervals for the estimates of 7 Oe=Ixt
are 4.6/7.5/5.5 times wider than in the independence case (compare results for DGP D-2 with a =
3.5% in Panels A and B of Table VI). For other alpha DGPs, this difference becomes even larger.?!

A consequence of this increased estimator variability is that, even if nonzero alphas are large
enough that the FDR estimator is not biased, the estimator will often be far from the truth. For
DGP D-2 with large alphas of £3.5%, the FDR methodology has little bias but it estimates the
proportions of zero-, negative, and positive-alpha funds to be above 90%, below 10%, and 0%,
respectively, in more than a quarter of the simulated samples. Another consequence of this in-
creased estimator variability is that, when the true proportions are near the natural boundaries of
0 and 1, the FDR estimator becomes biased, even for very large a. For example for a DGP with
n T =0.5%, the estimates of 7+ are 5 to 7 times larger than the truth, even for @ = 3.5% (see

Table IA.III in the Internet Appendix).

20The proportions of funds following each investment strategy in our simulations are as in the data (strategy
classifications derived from the Thomson database): 22%, 66%, and 12%, respectively. The fund-specific J; and o*
are estimated from the data; the means and standard deviations of J; are 1072 . [ 0.60 033 1.07 2.01 ]/ and
10~2. [ 0.78 046 1.08 1.07 ]/, respectively, and the mean of ¢;* is 0.014. Also, G; ~ N (0, I) without loss
of generality.

2lFor the same DGP, BSW find a more modest increase of 1.5/2.0/2.2 in the confidence intervals. BSW also
consider other types of error correlation (e.g., block dependence), one of which they term “extreme.” In this case,
they find that the 90% intervals for the estimates of 7°/z ~/z+ are 2.8/2.7/2.5 times wider than in the baseline. This

effect is still considerably smaller than the one we find.
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III. Concluding Discussion

BSW propose the FDR approach to precisely estimate the proportion of funds with negative,
zero, and positive alpha in the population of mutual funds. Owing to its simplicity and its remark-
able accuracy as demonstrated in their simulations, this methodology has subsequently been widely
adopted in finance. In this study, we expand the BSW simulations to gain a deeper understanding
of the FDR’s performance. We find that the FDR performs poorly under certain conditions, and
that the accuracy found in past simulations in the mutual fund setting can be traced to potentially
unrealistic simulation assumptions such as that i) fund alphas follow a discrete distribution with
point masses very far from zero, ii) there is a large number of observations per fund, and iii) there
is no or limited cross-sectional correlation across funds.

First, we show that, for a wide range of DGPs, the FDR approach produces estimates for the
proportion of zero-alpha (nonzero-alpha) funds that are upward (downward) biased and that the
corresponding confidence intervals almost never contain the true proportions. We also show that the
FDR estimator’s accuracy is not improved as the number of funds in the sample increases, and that
convergence to the true values is very slow as the number of observations per fund increases. Finally,
we show that realistic levels of cross-sectional correlation increase the estimator’s variability by as
much as an order of magnitude. Overall, our results indicate that the FDR approach is unlikely to
offer a substantial improvement over simpler methodologies in settings where the signal-to-noise
ratio in the data is low and consequently individual tests have low power. Specifically in the context
of mutual funds, the bias we demonstrate can materially change the economic conclusions regarding
the prevalence of skill in the mutual fund industry, the rationality of investing in mutual funds,
and the validity of the Berk and Green (2004) theory, which suggests most funds have zero alpha.

Our results highlight that, while the FDR methodology can be very advantageous in some
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settings, it needs to be applied with caution. Therefore, it is important that researchers in finance
examine the data at hand to check, for example using simulations, that individual tests have suf-
ficient power to render the FDR accurate. Another possibility would be to consider approaches
that aim to mitigate the problem of low power by focusing on the alternative hypothesis and/or by
pooling information from all individuals (e.g., funds) to learn about the cross-sectional distribution
of the parameters of interest (e.g., alpha). This is a potentially fruitful avenue that is being pursued
in recent working papers in the context of fund performance evaluation (Ferson and Chen (2015),

Andrikogiannopoulou and Papakonstantinou (2016), Harvey and Liu (2018)).
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Table I: Estimates of Alpha Group Proportions — Discrete Nonzero as

Results from simulations in which nonzero as (expressed as annualized percentages) are generated
from various discrete distributions, that is, a ~ %% +7 _5(; +7 "'5;. Across rows, we vary the true

proportions 7

0

,m—, r T, and across columns we vary the distance a of nonzero as from 0. Other

simulation parameters are as in BSW. In the table, we report the mean (across 1,000 repetitions)
estimated proportions from the FDR approach and their standard deviations (in parentheses). Each
cell is shaded, with darker shades corresponding to more biased estimates. Results corresponding
to the DGP used by BSW are enclosed in a border.

DGP D-1: 7% =93.75%
T~ = 575%
zt = 0.50%
DGP D-2: 7% =75.00%
T~ =23.00%
t = 2.00%
DGP D-3: 7% =37.50%
= =57.50%
zt = 5.00%
DGP D-4: 79 = 6.25%
T~ = 86.25%
t = 7.50%

a=1.0 a=15 a=20 a =25 a=23.0 a=35
97.95 (2950 97.25 (295 96.06 (294) 94.99 (294) 94.54 (294 94.08 (2.93)
125 262 190 (262) 296 (61) 3.86 (261) 439 (261) 477 (2.61)
0.81 300 0.85 (1300 098 (129 1.15 (129 1.07 (1.29 1.15 (1.29)
94.97 294 89.96 (291) 85.00 (2.89) 80.85 (2.86) 7835 (2.84) | 76.33 (2.82)
4.61 259 935 @57 1375 (255 17.27 (253) 19.65 (252) | 21.41 (2:50)
042 (124 0.69 (122 125 (121) 1.89 (1200 2.00 (120 | 2.26 (1.20)
(252) 4522 (239 40.94 (230)
(224) 49.82 (214 53.75 (2.07)
(1.01) 495 (1.00) 531 (1.00)
197 1777 161 11.62 (1.32)
@77 74771 (151 80.48 (1.31)
(0.82) 7.51 (0.80)  7.90 (0.79)
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Table II: Actual Coverage Probabilities of 95% Confidence Intervals of FDR Estimates

Results corresponding to the simulations in Table I, where nonzero as come from discrete distribu-
tions (o ~ 7%+« o5 + 7r+5;), with the true proportions 7%, 7=, 7t varying across rows, and
the distance a of nonzero as from 0 varying across columns. Here, we report the percentage (across
1,000 repetitions) of samples such that the true proportion is contained in the 95% confidence
interval constructed by the FDR methodology (e.g., for 7°, it is #° & 1.96 60). Each cell of the
table is shaded, with darker (lighter) shades corresponding to cases in which the actual percentage
of confidence intervals containing the true value is farther (closer) to the nominal coverage of 95%.
Results for the DGP used by BSW are enclosed in a border.

a=10 a=15 a=20 a=25 a=30 a=35

DGP D-1: z° =93.75% 63.50% 76.00% 89.50% 92.50% 95.00%  98.00%
T~ = 575% 57.50% 73.50% 88.50% 92.50% 94.50%  97.50%
t = 0.50% 92.00% 92.50% 89.50% 88.50% 88.50%  89.50%
DGP D-2: 0 =75.00% 48.00% 79.50% | 94.00%
T~ =23.00% 85.50% | 97.50%

t = 2.00% 99.50% 98.50% 96.00% 93.00% 91.50% | 87.50%

DGP D-3: z°0 =37.50% 72.00%
T~ =57.50% 67.00%
t = 5.00% 63.00% 79.00%  80.00%

DGP D-4: 70 = 6.25%
T~ =86.25%
zt = 7.50%

89.00%  93.00%

53.50%
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Table III: Estimates of Alpha Group Proportions — Normal Nonzero as

Results from simulations in which nonzero as (expressed as annualized percentages) are generated
from normals, that is, a ~ 79%° + (7r_ + 7r+) fN(O,ag)- Across rows, DGPs differ in the true
proportions 7°, 7 ~, and 7+ — though 7~ = 7+ since N/ (O, ao%) 1s symmetric at 0 — and across
columns they differ in the standard deviation g, of the nonzero as. Other simulation parameters
are as in BSW. In the table, we report the mean (across 1,000 repetitions) estimated proportions
from the FDR approach and their standard deviations (in parentheses). Cells are shaded, with
darker shades corresponding to more biased estimates.

o, =0.5 o, =1.0 o, =1.5 o, =2.0 o, =3.0 o, =50

DGP N-1: 7% =95.00% 98.67 (295) 98.21 (295 98.01 (295 97.46 (295 96.89 (295 96.12 (294
- 2.50% 054 263 078 263 079 (263 1.13 (263) 1.39 (2.63) 1.74 (2.63)
= 2.50% 080 (132 1.01 (132 1.20 (133 141 133 1.73 (134 215 (1.34)

N
I

DGP N-2: 7% =75.00% 98.18 (295 9542 (294 9243 (293) 89.58 (291) 85.68 (2.89) 81.87 (2.86)
= =12.50% 0.74 (2.63) 2.07 (263) 3.39 (262) 492 (262) 6.86 (2.61) 8.90 (2.60)
rt =12.50% 1.09 132 251 (1349 418 (136) 550 (137) 7.46 (139 924 (141D

DGP N-3: 7% =20.00%
7~ = 40.00%
7+ = 40.00%

67.58 (273) 55.15 (2.56) 42.52 (233)
1543 (253) 21.69 (244) 28.24 (2.30)
16.99 (145 23.16 (1.47) 29.24 (1.48)

49.70 (247 3532 .17

DGP N-4: 79 =10.00%

= =45.00% 24.18 (2.38) 31.80 (2.20)
nt =45.00% 26.12 (1.47) 32.88 (1.47)
DGP N-5: 7% = 1.00% 44.56 (238 29.09 (2.00)
= =49.50% 26.69 (232) 34.78 (2.10)
nt =49.50% 28.75 (1.48) 36.13 (1.46)




Table IV: Estimates of Alpha Group Proportions — Varying N and T

Results from simulations in which we vary the number of funds N and the number of observations T
per fund in the sample, assuming a balanced panel. In all simulations, as (expressed as annualized
percentages) are drawn from a ~ 7%° + 762 + z 61, with z° = 9%, 7~ = 78%, =+ = 13%
and o = 1%. Other simulation parameters are as in BSW. In the table, we report the mean (across
1,000 repetitions) estimated proportions from the FDR approach and their standard deviations (in
parentheses). Each cell is shaded, with darker shades corresponding to more biased estimates.

T =180 T =384 T =500 T =750 T =1,000 T =2,000

N = 1,400: z° = 9.00% 35.74 (2.18)
7~ = 78.00% 55.05 (1.99)
t =13.00% 9.20 (1.00)
N =2,000: z° = 9.00% 35.89 (1.83)
T~ =78.00% 54.95 (1.67)
t =13.00% 9.16 (0.84)
N =3,500: z° = 9.00% 36.11 (1.39)
T~ =78.00% 54.88 (1.26)
zt =13.00% 9.01 (0.63)
N =5,000: 7% = 9.00% 35.93 (1.16)
T~ =78.00% 54.97 (1.06)
1t =13.00% 9.10 (0.53)




Table V: Estimates of Alpha Group Proportions — Unbalanced Panel

Results from simulations in which nonzero as (expressed as annualized percentages) are generated
from discrete distributions (o« ~ 7% + 7 o, + 7r+5;), but additionally the sample of funds is an
unbalanced panel with the number of observations per fund drawn from its empirical distribution
in the data (whose mean is 180). Across rows, DGPs differ in the true proportions z°, 7 ~, and
7", and across columns they differ in the distance a of nonzero as from zero. Other simulation
parameters are as in BSW. We report the mean (across 1,000 repetitions) estimated proportions
from the FDR methodology and their standard deviations (in parentheses). Cells are shaded, with
darker shades corresponding to more biased estimates.

a=10 a=15 a=20 a=25 a=3.0 a=35

DGP D-1: z° =93.75% 98.66 (247) 98.57 (247) 97.71 (247) 96.72 (246) 96.25 (246) 95.97 (2.46)
B 5.75% 0.81 219 1.02 219 161 219 248 219 296 (219 327 (219
t = 0.50% 0.53 109 041 1.08 0.69 (1.08) 0.80 (1.08) 0.79 (1.08) 0.77 (1.08)

8
I

DGP D-2: z° =75.00% 97.11 (246) 94.85 (246) 91.35 (244) 88.14 (243) 85.11 (242) 82.95 (2.40)
r~ =23.00% 257 (18 483 (17) 8.14 (216 11.03 (.15 13.74 (2.14) 15.60 (2.13)
t= 2.00% 032 (105 032 (104 050 (103 0.82 (102 1.14 1.01H 145 @1.01)

DGP D-3: 7% =37.50% 93.56 (245) 86.61 (242) 78.89 (238 70.75 (231) 63.33 (224) 57.16 (2.17)
7~ =57.50% 6.37 (215 1331 (212) 2091 (.08) 2845 (2.02) 3478 (1.97) 39.96 (1.92)

T = 5.00% 1.89 (087) 2.88 (0.85)
DGP D-4: z° = 6.25% 55.76 (2.15) 45.10 (2.00) 35.57 (1.82)
T~ =86.25% 5220 (1.74) 59.96 (1.61)
t = 7.50% 4.47 (0.70)
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Table VI: Interval Estimates of Alpha Group Proportions — Independent vs. Correlated Errors

Interval estimates corresponding to simulations in which the sample of funds is an unbalanced
panel and nonzero as (expressed as annualized percentages) are generated from a variety of discrete
distributions (a ~ 7%° + 7 0, +m +§;), and the errors in the model of returns are heterogeneous
across funds and independent (Panel A) or correlated (Panel B). Across rows, the DGPs differ in
the true proportions 7«
as from zero. For each DGP, we conduct 1,000 simulations and calculate the estimated proportions
from the FDR approach. In the table, we report the interval that contains 90% of the estimated
proportions across the 1,000 repetitions. Note: For mean point estimates corresponding to the
interval estimates in Panel A (B), see Table IA.Il (IA.III) in the Internet Appendix.

Panel A: Cross-sectionally Independent Errors

,w~,and 7, and across columns they differ in the distance a of nonzero

a=1.0 a=15 a=20 a=25 a=3.0 a=3.5
DGP D-1: 7% =93.75% (94.9,99.9)  (93.9,999) (935,999 (92.7,99.9) (92.2,99.9) (92.4,99.7)
T~ = 575% (00, 27) (00, 37 (00, 43 (00, 50) (0.0, 54 (03, 54
= 0.50% (0.0, 28 (00, 33) (00, 28 (0.0, 3.1) (0.0, 29 (0.0, 3.1
DGP D-2: 7% =75.00% (92.6,99.9) (89.5,96.7) (85.9,93.2) (83.7,90.6) (80.6,88.4) (78.8,86.3)
r~ =23.00% (00, 62) (33,89 (68,11.8) (94,143) (11.6,162) (13.7,18.0)
= 2.00% (00, 1.6) (00, 21) (00, 30 (0.0, 32) (0.0, 3.6) (0.0, 3.7
DGP D-3: 7% =37.50% (86.7,94.9) (78.7,87.1) (71.3,78.7) (63.8,71.2) (58.2,65.3) (54.0,60.4)
T~ =57.50% (5.1,12.8) (129,204) (21.3,27.8) (28.7,33.8) (34.1,38.5) (38.2,41.9)
= 5.00% (00, 04 (00, 1.6) (00, 24) (0.0, 33) (0.0, 44 (03, 459
DGP D-4: 7° = 6.25% (81.6,89.1) (69.8,78.3) (58.4,65.6) (47.7,55.0) (39.4.,46.1) (31.9,38.3)
7~ =86.25% (109,18.3) (21.7,30.1) (34.4,40.3) (44.2,49.5) (52.4,56.8) (58.3,63.0)
= 7.50% (0.0, 000 (00, 00) (00, 25 (0.0, 36) (08, 49 (25, 56)
Panel B: Cross-sectionally Correlated Errors
a=1.0 a=15 a=20 a=25 a=3.0 a=3.5
DGP D-1: 7% =93.75% (74.8,99.9)  (76.8,99.9) (759,99.9) (77.1,99.9) (72.5,99.9) (76.1,99.9)
T~ = 575% (0.0,180) (00,194) (00,1777) (0.0,194) (0.0,23.9) ( 0.0,16.6)
= 0.50% (0.0,16.2) (0.0,153) (0.0,17.8) (0.0,16.5) (0.0,19.1) ( 0.0,16.9)
DGP D-2: 7% =75.00% (75.4,99.9) (73.8,99.9) (74.7,99.9) (71.6,99.9) (69.2,99.9) (63.8,98.3)
r~ =23.00% (0.0,21.7) (0.0,229) (0.0,21.2) (0.0,278) (0.0,27.8) ( 1.7,33.8)
rt = 2.00% (0.0,104) (0.0,12.3) (0.0,15.1) (0.0,142) (0.0,185) ( 0.0,20.5)
DGP D-3: 7% =37.50% (70.9,99.9)  (58.2,99.9) (59.8,91.6) (52.0,82.6) (49.7,76.1) (43.6,67.5)
T~ =57.50% ( 0.0,28.00 (0.0,403) (6.6,40.2) (14.3,469) (20.7,48.8) (26.8,55.7)
t = 5.00% ( 0.0,10.8) (0.0,105) (0.0, 97) (0.0,102) (0.0, 89) (0.0, 82)
DGP D-4: 7° = 6.25% (63.7,99.9) (57.6,94.3) (42.2,85.2) (34.8,69.3) (27.9.,64.6) (23.8,56.7)
T~ =86.25% (0.0,363) (5.1,423) (144,56.8) (26.2,63.3) (32.9,69.8) (39.7,72.2)
= 7.50% (0.0, 58 (0.0, 500 (00, 6.1) (0.0, 56) (0.0, 59 (12,62

30



Panel A: Alpha distribution in BSW

Panel B: Dispersed alphas
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Panel C: Alpha p-values in BSW
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Figure 1: Illustration of the FDR approach’s intuition and potential failure. We simulate funds
with as drawn from the distribution used by BSW (in Panel A) and an alternative in which as are
dispersed (in Panel B). In Panels C and D, we plot for each distribution the histogram of p-values
p from fund-by-fund tests of the zero-a null; the dark blue (light blue) areas correspond to zero-o
(nonzero-a.) funds. The FDR approach assumes all p above some threshold — for example, A = 0.5,
indicated by the dashed vertical line — belong to zero-a funds. Since p ~ U (0, 1) under the null,
it then estimates the proportion of zero-o (nonzero-a) funds as the area of the histogram below
(above) the dotted horizontal line. Thus, the light-blue-shaded area below the dotted horizontal
line corresponds to the proportion of nonzero-a funds that are misclassified as zero a.
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Panel A: 7~ estimates for & = 1% Panel B: 7~ estimates for a = 2% Panel C: 7~ estimates for a = 3.5%
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Panel D: 7" estimates for & = 1% Panel E: 77 estimates for & = 2% Panel F: 7+ estimates for a = 3.5%
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Figure 2: Comparison of the FDR and ‘no-luck’ approaches, for various levels of the true nonzero
alphas @ and the true proportion 7° of zero-alpha funds. We plot as a function of z° the true
and estimated proportions of negative-alpha (Panels A, B, C) and positive-alpha (Panels D, E, F)
funds. We plot the true proportions in solid blue and the FDR (no-luck) estimates in dashed green
(dotted red) lines. Each column of panels corresponds to a different a: Panels A, D correspond
to a = 1%, Panels B, E to a = 2%, and Panels C, F to a = 3.5%.
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